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Crowds Make Choices

Decisions of a large number of people may be informative:

I Stock markets
I Sports betting
I Elections
I Opinion polls
I Jury trials
I Popularity of restaurants, books and movies
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Madness or Wisdom of Crowds?

�No one in this world, so far as I know, has ever lost money by
underestimating the intelligence of the great masses of the
common people.�
H. l. Mencken.

�If the blind lead the blind, both shall fall into the ditch.�
Matthew 15:14.

�A large group of diverse individuals will come up with better and
more robust forecasts and make more intelligent decisions than
even the most skilled decision maker.�
James Surowiecki.
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Wisdom of Crowds: Examples

I Francis Galton and the Plymouth ox weighing competition
I Explosion of space shuttle Challenger and the stock price of
Morton Thiokol

I Who Wants to be a Millionaire? Accuracy rate of audience
(91%) better than that of expert friend (65%)

I Iowa electronic market predicts election results:
I Vote share predictions within 1.37% in US presidential
elections, 3.43% in other

I Better than 75% of opinion polls

I Hollywood Stock Exchange predicts Oscar winners

Parikshit Ghosh NMI Workshop, ISI Delhi

Voting and Information Aggregation



Introduction Statistical Jury Theorem Strategic Jury Theorem

Voting and Mechanism Design

I Voting serves two purposes:
I aggregate preferences and resolve con�ict of interest
I aggregate information on common interest aspects of choice

I Example: disagreements on free trade can spring from
I the fact that it produces winners and losers
I no one is sure about macroeconomic implications

I We focus on the �pure� information aggregation problem
I Restricted mechanism design: no communication
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Condorcet Jury Theorem

1. The decision of a jury will be correct more often than the
decision of any single individual (Generalization: larger juries
do better than smaller ones).

2. The decision of a jury is correct with probability approaching
1 a the size of the jury grows to in�nity.

I Under what conditions do these conclusions hold?
I Which voting voting rules satisfy these properties?
I Statistical versus strategic jury theorems.
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Voting Over a Binary Choice
I State of the world (s) = guilty (G ) or innocent (I ).
I Decision (d) = convict (C ) or acquit (A).
I Correct decision: C when G , A when I .
I Voters 1, 2, 3..., n. Probability of j voting correctly =
pj 2 [ 12 , 1]. Probabilities are independent.

I Voting rule = α 2 [ 12 , 1] (minimum fraction of votes needed
for a decision).

I Let xj = 1 when j�s vote is correct; xj = 0 when wrong.
I Probability that the jury�s decision is correct:

P(n, α) = Pr

"
X =

n

∑
j=1
xj � αn

#
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Statistical Jury Theorem

Theorem
Assume pj = p for all j . Then
(1) If p > α, then there exists N such that for all n > N,
P(n, α) > p and limn!∞ P(n, α) = 1.
(2) If p � α, then there exists N such that for all n > N,
P(n, α) < p and limn!∞ P(n, α) = 0.

I Under majority rule, the jury theorems hold.
I Under super-majority rule, individual voters must be
su¢ ciently accurate for the theorems to be valid.

I The ex ante probability of a decision (e.g., conviction) or an
error (e.g., convicting the innocent) is increasing in n.
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Increasing Jury Size

0 1 Correct
vote propn½ p
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A Model of Rational Voters

I Voter preferences:

u(s, d) =

8<:
�q if s = I , d = C ,
�(1� q) if s = G , d = A,
0 otherwise,

where q 2 (0, 1).
I q is the �threshold of doubt�: C is optimal i¤ the voter
believes there is a greater than q chance the state is G .

I Let prior on �guilt�= π.
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A Model of Rational Voters

I Voter private information: conditionally independent private
signal tj 2 fg , ig, with distribution

g i
G pG 1� pG
I 1� pI pI

I Signals are informative: pG 6= 1� pI .
I Voters cannot communicate; they must vote independently.
I Since there is common interest, the game with communication
is trivial: voters have the incentive to share their signals
truthfully.
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Strategies

I Mappings from signal to vote: σ : fg , ig ! ∆fC ,Ag.
I A strategy is informative if σ(g) = 1 and σ(i) = 0.
I A strategy is responsive if σ(g) 6= σ(i).
I A strategy is sincere if it is the same way the juror would
have voted if she were making the decision alone (n = 1).
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An Example

I Two voters or one
I Threshold of doubt: q = 1

2

I Prior on G = π = 2
3

I Signal accuracy: p = 3
4

A Judge (n = 1)

I Pr (G jg) = πp
πp+(1�π)(1�p) =

6
7 >

1
2

I Pr(G ji) = π(1�p)
π(1�p)+(1�π)p =

2
5 <

1
2

I Optimal decision is informative: σ(g) = 1 and σ(i) = 0
I Expected payo¤ = � 1

2 .
1
4 = �0.125
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Jury of Two

I Assume unanimity required for C , otherwise A
I Expected payo¤:

�1
2
[π(1� p2) + (1� π)(1� p)2] = �0.15625

I But sincere voting is not a Nash equilibrium
I Assume sincere voting. Then

Pr(G jpiv , i) = Pr(G jg , i) = 2
3
>
1
2

I Voter receiving i signal will want to deviate and vote for C

Parikshit Ghosh NMI Workshop, ISI Delhi

Voting and Information Aggregation



Introduction Statistical Jury Theorem Strategic Jury Theorem

Symmetric Mixed Equilibrium

I Let σ(g) = 1 and σ(i) = σ

Pr(G jpiv) =
π [p + (1� p)σ]

π [p + (1� p)σ] + (1� π) [pσ+ 1� p]

=
6+ 2σ

7+ 5σ
= λ

Pr(G jpiv , i) =
λ(1� p)

λ(1� p) + (1� λ)p

=
λ

3� 2λ

I Indi¤erence ) λ
3�2λ =

1
2 ) λ = 3

4 ) σ = 3
7
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Symmetric Mixed Equilibrium

I Error probabilities:
I In state G : 1�

�
p2 + 2p(1� p)σ+ (1� p)2σ2

�
= 13

49
I In state I : (1� p)2 + 2p(1� p)σ+ p2σ2 = 16

49

I Expected payo¤ = � 1
2 .
� 2
3 .
13
49 +

1
3 .
16
49

�
= �0.143 < 0.125

I Jury still does worse than judge, even with sophisticated voters
I Is this adverse consequence a result of equilibrium selection?
I Another equilibrium: both voters vote for A regardless of their
signal. Since neither is pivotal, best response property is not
violated!

I Is there a better equilibrium than all of these?
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Asymmetric Pure Equilibrium

I Voter 1 votes for C regardless of signal
I Voter 2 votes sincerely
I Since voter 2 is always pivotal, he is e¤ectively a judge. Hence
sincere and informative voting is a best response for voter 2.

I Checking best response property for voter 1:

Pr(G jpiv , i) = Pr(G jg , i) = π =
2
3
>
1
2

I The equilibrium mimics trial by judge (n = 1)
I Expected payo¤ = �0.125
I Jury does no worse than judge under this equilibrium selection.
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Full Information and Sincere Voting

I If all the signals were known, posterior belief:

Pr[s = G j#g signals is k ] = πpkG (1� pG )n�k

πpkG (1� pG )n�k + (1� π)(1� pI )kpn�kI

=
1

1+ 1�π
π

h
1�pI
pG

ik h pI
1�pG

in�k
I There is a critical number of g signals, k�, such that the
posterior is λ or higher i¤ k � k�.

Theorem
If pI = pG = p, sincere voting is informative and rational i¤ the
minimum number of votes needed for conviction is exactly k�.
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Equilibrium Selection Issues

Theorem
(McLennan, 1998) Generically, in any common interest game, the
e¢ cient quilibrium is in mixed strategies.

I Symmetric mixed equilibria are generally not Pareto e¢ cient
in the class of equilibria.

I E¢ cient equilibria are asymmetric:
I a subset of voters vote uninformatively, stacking votes for C or
A regardless of their signal

I remaining voters vote informatively, i.e., σ(g) = 1, σ(i) = 0

I The most e¢ cient voting rule is one where the set of
uninformative voters is zero.
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Inferiority of Unanimous Verdicts (Feddersen and
Pesendorfer, 1997)

I Under sincere voting, raising the minimum votes needed for
conviction lowers the probability of wrongful conviction.

I Under strategic voting, both error probabilities may go up.
I Relies on the information content of being �pivotal�.
I Unanimity

I makes conviction harder for �xed voting behavior.
I makes voters more willing to convict.

I CJT fails for unanimity rule but not for interior rules.
I Generalized in Chakraborty and Ghosh (2003).
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Symmetric Mixed Equilibria

I Let π = 1
2 and pG = pI = p.

I Let σ(g), σ(i) be probability of voting for C when signal is
and, i respectively.

I An equilibrium is responsive if σ�(g) 6= σ�(i).
I Probabilities of voting for C :

γG = pσ(g) + (1� p)σ(i)
γI = (1� p)σ(g) + pσ(i)

I Since posterior after a g signal > posterior after an i signal,

σ(g) 2 (0, 1)) σ(i) = 0

σ(i) 2 (0, 1)) σ(g) = 1
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Mixed Equilibrium: Type 1

I σ�(g) = 1 and σ�(i) = 0.
I Arises if

pαn�1(1� p)(1�α)n+1

pαn�1(1� p)(1�α)n+1 + (1� p)αn�1p(1�α)n+1| {z } � q

Pr(G jpiv , i) � doubt threshold

I and

pαn(1� p)(1�α)n

pαn(1� p)(1�α)n + (1� p)αnp(1�α)n| {z } � q

Pr(G jpiv , g) � doubt threshold
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Mixed Equilibrium: Type 2
I σ�(g) = 1 and σ�(i) = σ.
I Indi¤erence after signal i implies:

(1� p)γαn�1
G (1� γG )

(1�α)n

(1� p)γαn�1
G (1� γG )

(1�α)n + pγαn�1
I (1� γI )

(1�α)n
= q

I Use
γG = p + (1� p)σ; γI = pσ+ (1� p)

I On solving:

σ(i) =
p(1+ f )� 1
p � f (1� p)

where f =

�
1� q
q

� 1
αn�1

�
1� p
p

� (1�α)n+1
αn�1
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Mixed Equilibrium: Type 3
I σ�(g) = σ and σ�(i) = 0.
I Indi¤erence after signal g implies:

pγαn�1
G (1� γG )

(1�α)n

pγαn�1
G (1� γG )

(1�α)n + (1� p)γαn�1
I (1� γI )

(1�α)n
= q

I Use
γG = p + (1� p)σ; γI = pσ+ (1� p)

I On solving:

σ(g) =
h� 1

p(h+ 1)� 1

where h =

�
1� q
q

� 1
(1�α)n

�
1� p
p

� αn
(1�α)n
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Interior Rules

Theorem
Suppose α 2 (0, 1). (1) There is n such that for all n � n, there is
a symmetric responsive equilibrium. (2) For symmetric, responsive
equilibria

lim
n!∞

Pr(C jI ) = lim
n!∞

Pr(AjG ) = 0

I Both error probabilities (convicting the innocent and
acquitting the guilty) vanish as the size of the jury becomes
very large.

I Note that any interior rule has this property.
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Interior Rules

I Limit expressions for mixtures:

lim
n!∞

σ(i) =

p
�
1+

�
1�p
p

� 1�α
α

�
� 1

p �
�
1�p
p

� 1�α
α
(1� p)

2 (0, 1)

lim
n!∞

σ(g) =

�
1�p
p

� α
1�α � 1

p
��

1�p
p

� α
1�α
+ 1

�
� 1

2 (0, 1)

I East to check the theorem holds.
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Outline of Proof

I As n! ∞, the following holds:

γI < α < γG

I By the Law of Large Numbers, for large n, the proportion of
votes for C is γG (when guilty) and γI (when innocent).

I Hence, almost surely, the decision is C (when guilty) and A
(when innocent).

I For most voting rules, Condorcet�s conclusions are valid.
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Unanimity Rule

Theorem
Under unanimity rule, if the defendant is convicted with strictly
positive probability, then Pr(I jC ) is bounded below by

min
�
1
2
,

(1� q)(1� p)2
(1� p)2 + q(2p � 1)

�
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Unanimity Rule

Theorem
Assume condition 1 and q > 1� p. Under unanimity rule, there is
a unique responsive symmetric equilibrium with the limiting
properties:

lim
n!∞

σ(i) = 1

lim
n!∞

Pr(C jI ) > 0

lim
n!∞

Pr(AjG ) > 0
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An Example

I p = 0.8, q = 0.9, n = 12.

Voting rule 7 8 9 10 11 12
Pr(C jI ) .004 .0011 .0025 .0045 .0066 .0069
Pr(AjG ) .019 .066 .135 .245 .420 .654

σ(i) 0 .023 .143 .277 .423 .575

I From k = 8 onwards, both error probabilities go up as
threshold of conviction is raised. Ine¢ cient regardless of
preference parameter q.
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Selecting E¢ cient not Symmetric Equilibria (Chakraborty
and Ghosh, 2003)

I Monotonic voting rules: let k(n) be the minimum number of
votes necessary for conviction in a jury of size n, and let k(n)
as well as n� k(n) be non-decreasing.

I Let V (n, k(n)) be jurors�expected payo¤ if the most e¢ cient
equilibrium is played.

Theorem
(a) V (n, k(n)) is non-decreasing in if k(n) is a monotonic voting
rule (b) limn!∞ V (n, k(n)) = 0 if and only if
limn!∞ k(n) = limn!∞[n� k(n)] = ∞ .

I Larger juries can always mimic the results of smaller juries.
I If required votes are bounded, set of informative voters
bounded.
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